
LECTURE-10

OO Design 2

Module Level Concepts

• Basic modules are classes

• During design key activity is to specify the
classes in the system being built

• Correctness of design is fundamental

• But design should also be “good” – efficient,
modifiable, stable, …

• Can evaluate a design using coupling,
cohesion, and open-closed principle

OO Design 3

Coupling

• Coupling is an inter-module concept, captures
the strength of interconnection between
modules

• More tightly coupled the modules, the more
they depend on each other, more difficult to
modify one

• Low coupling is desirable for making systems
understandable and modifiable

• In OO, three types of coupling exists –
interaction, component, and inheritance

OO Design 4

Coupling…

• Interaction coupling occurs due to methods of
a class invoking methods of other classes
– Like calling of functions

– Worst form if methods directly access internal
parts of other methods

– Still bad if methods directly manipulate variables
of other classes

– Passing information through temporary variables
is also bad

OO Design 5

Coupling…

• Least interaction coupling if methods
communicate directly with parameters

– With least number of parameters

– With least amount of information being passed

– With only data being passed

• I.e. methods should pass the least amount of
data, with least number of parameters

OO Design 6

Coupling…

• Component coupling – when a class A has
variables of another class C
– A has instance variables of C

– A has some parameters of type C

– A has a method with a local variable of type C

• When A is coupled with C, it is coupled with all
subclasses of C as well

• Component coupling will generally imply the
presence of interaction coupling also

OO Design 7

Coupling…

• Inheritance coupling – two classes are coupled
if one is a subclass of other

• Worst form – when subclass modifies a
signature of a method or deletes a method

• Coupling is bad even when same signature but
a changed implementation

• Least, when subclass only adds instance
variables and methods but does not modify
any

OO Design 8

Cohesion

• Cohesion is an intra-module concept

• Focuses on why elements are together
– Only elements tightly related should exist together in a

module

– This gives a module clear abstraction and makes it easier to
understand

• Higher cohesion leads to lower coupling – many
interacting elements are in the module

• Goal is to have higher cohesion in modules

• Three types of cohesion in OO – method, class, and
inheritance

OO Design 9

Cohesion…

• Method cohesion – why different code
elements are together in a method (like
cohesion in functional modules)

– Highest form is if each method implements a clearly
defined function with all elements contributing to
implementing this function

– Should be able to state what the module does by a
simple statement

OO Design 10

Cohesion…

• Class cohesion – why different attributes and
methods are together in a class
– A class should represent a single concept with all

elements contributing towards it

– Whenever multiple concepts encapsulated,
cohesion is not as high

– A symptom of multiple concepts – different
groups of methods accessing different subsets of
attributes

OO Design 11

Cohesion…

• Inheritance cohesion – focuses on why
classes are together in a hierarchy

– Two reasons for subclassing

• generalization-specialization

• reuse

–Cohesion is higher if the hierarchy is for
providing generalization-specialization

OO Design 12

Friday

OO Design 13

Open-closed Principle
• Principle: Classes should be open for extension

but closed for modification
– Behavior can be extended to accommodate new

requirements, but existing code is not modified

– I.e. allows addition of code, but not modification of
existing code

– Minimizes risk of having existing functionality stop
working due to changes – a very important
consideration while changing code

– Good for programmers as they like writing new
code

OO Design 14

Open-closed Principle…

• In OO this principle is satisfied by using
inheritance and polymorphism

• Inheritance allows creating a new class to
extend behavior without changing the original
class

• This can be used to support the open-closed
principle

• Consider example of a client object which
interacts with a printer object for printing

OO Design 15

Example

OO Design 16

Example..

• Client directly calls methods on Printer1

• If another printer is to be allowed

– A new class Printer2 will be created

– But the client will have to be changed if it wants to
use Printer 2

• Alternative approach

– Have Printer1 a subclass of a general Printer

– For modification, add another subclass Printer 2

– Client does not need to be changed

OO Design 17

Example…

OO Design 18

Liskov’s Substitution Principle

• Principle: Program using object O1 of base
class C should remain unchanged if O1 is
replaced by an object of a subclass of C

• If hierarchies follow this principle, the open-
closed principle gets supported

