LECTURE-10



Module Level Concepts

Basic modules are classes

During design key activity is to specify the
classes in the system being built

Correctness of design is fundamental

But design should also be “good” — efficient,
modifiable, stable, ...

Can evaluate a design using coupling,
cohesion, and open-closed principle

OO Design



Coupling

Coupling is an inter-module concept, captures
the strength of interconnection between
modules

More tightly coupled the modules, the more
they depend on each other, more difficult to
modify one

Low coupling is desirable for making systems
understandable and modifiable

In OO, three types of coupling exists —
interaction, component, and inheritance

OO Design 3



Coupling...

* |Interaction coupling occurs due to methods of
a class invoking methods of other classes

— Like calling of functions

— Worst form if methods directly access internal
parts of other methods

— Still bad if methods directly manipulate variables
of other classes

— Passing information through temporary variables
is also bad

OO Design



Coupling...

* Least interaction coupling if methods
communicate directly with parameters

— With least number of parameters
— With least amount of information being passed

— With only data being passed

* |.e. methods should pass the least amount of
data, with least number of parameters

OO Design



Coupling...

 Component coupling —when a class A has
variables of another class C

— A has instance variables of C
— A has some parameters of type C
— A has a method with a local variable of type C

* When A is coupled with C, it is coupled with all
subclasses of C as well

 Component coupling will generally imply the
presence of interaction coupling also

OO Design 6



Coupling...

Inheritance coupling — two classes are coupled
if one is a subclass of other

Worst form — when subclass modifies a
signature of a method or deletes a method

Coupling is bad even when same sighature but
a changed implementation

Least, when subclass only adds instance
variables and methods but does not modify

any

OO Design 7



Cohesion

* Cohesion is an intra-module concept

* Focuses on why elements are together
— Only elements tightly related should exist togetherin a

module
— This gives a module clear abstraction and makes it easier to

understand

* Higher cohesion leads to lower coupling — many
interacting elements are in the module

* Goalis to have higher cohesion in modules

* Three types of cohesion in OO — method, class, and
inheritance

OO Design



Cohesion...

* Method cohesion — why different code
elements are together in a method (like
cohesion in functional modules)

— Highest form is if each method implements a clearly
defined function with all elements contributing to
implementing this function

— Should be able to state what the module does by a
simple statement

OO Design 9



Cohesion...

* Class cohesion — why different attributes and
methods are together in a class

— A class should represent a single concept with all
elements contributing towards it

— Whenever multiple concepts encapsulated,
cohesion is not as high

— A symptom of multiple concepts — different
groups of methods accessing different subsets of
attributes

OO Design

10



Cohesion...

* Inheritance cohesion — focuses on why
classes are together in a hierarchy
—Two reasons for subclassing

e generalization-specialization
* reuse

— Cohesion is higher if the hierarchy is for
providing generalization-specialization

OO Design 11



Friday

OO Design

12



Open-closed Principle

* Principle: Classes should be open for extension
but closed for modification

— Behavior can be extended to accommodate new
requirements, but existing code is not modified

— |.e. allows addition of code, but not modification of
existing code

— Minimizes risk of having existing functionality stop
working due to changes — a very important
consideration while changing code

— Good for programmers as they like writing new
code

OO Design 13



Open-closed Principle...

In OO this principle is satisfied by using
inheritance and polymorphism
Inheritance allows creating a new class to

extend behavior without changing the original
ERS

This can be used to support the open-closed
principle

Consider example of a client object which
interacts with a printer object for printing

OO Design 14



Client

Example

OO Design

Printer]

15



Example..

* Client directly calls methods on Printerl
* |f another printer is to be allowed

— A new class Printer2 will be created

— But the client will have to be changed if it wants to
use Printer 2

e Alternative approach
— Have Printer1 a subclass of a general Printer
— For modification, add another subclass Printer 2
— Client does not need to be changed

OO Design

16



Client

Example...

Printer

]

Printer 1

OO Design

Printer 2




Liskov’s Substitution Principle

* Principle: Program using object O1 of base
class C should remain unchanged if O1 is
replaced by an object of a subclass of C

* |f hierarchies follow this principle, the open-
closed principle gets supported

OO Design

18



